

《摄像头的颜色探测》

功能介绍

在进行本功能测试前要注意,外部光源对摄像头的颜色识别是有影响的,在编程测试期间请保证不变的外部光源,否则测试数据会受到影响,还有当摄像头前的探测区域没有明显 反光时,识别颜色也较为准确。最好提供一个黑色、白色或者单色的背景色,被测物体的颜 色最好也是单色。颜色探测时被测物要保持稳定。

实验组件:

按照下图组装结构:

按照下图安装上摄像头并组装好试验台:

在软件中新建一个程序,打开摄像头窗口。点击左上角的"传感器域",在下面的程序 模块中将显示出 5 种摄像头探测模块:

本实例中,选择"颜色探测"模块:

单击"颜色探测"模块后,鼠标形状变为笔形,现在在视频监控窗口中绘制监测区域:

可以拖动监测区域框四周的锚点以改变形状,确定形状后,鼠标点击监测区域以外的地方以确定设置,鼠标变回光标形状:

右键单击设置好的监测区域,弹出属性面板,在这里给监测窗口设置一个唯一的名称, 这里我们将名称改为"Detect":

Color						
Color field Name Color Used in input element Note: The sensor field size and shape can be changed using the Drawing/Edit menu. OK Cancel						

确认后,你会看到,监测区域框内的名称变更为你设置的"Detect":

勾选"实时预览"复选框,你将看到摄像头拍摄的实时画面:

Detect V¥=53	Select PC Camera Resolution [pix] Frame rate [fps] Powerline freq. [Hz] Mirror Sensor values:	 PC Select 320x240 15 60Hz horizontal vertical 						
	Name	Contrast	Position	Size	red	green	blue	B/W
	Detect				50	54	57	53
00	Frame count		2607					

我们的电脑是使用 RGB 颜色标准的。RGB 颜色标准是指每种颜色都是由:Red(红) Green(绿) Blue(蓝)三种颜色按照不同比例混合而成。R、G、B 每种色各分为 256 阶 亮度,数值从 0 到 255 表示,一些颜色的 RGB 表示如下:

站各夕护	红色值	绿色值	蓝色值		
<u> </u>	Red(0 - 255)	Green(0 - 255)	Blue(0 - 255)		
黑色	0	0	0		
蓝色	0	0	255		
绿色	0	255	0		
青色	0	255	255		
红色	255	0	0		
洋红色	255	0	255		
黄色	255	255	0		
白色	255	255	255		

此外,监测系统还提供一个 B/W 属性来表示不同颜色的总体亮度值。 现在你可以从电脑上打印几张不同颜色的纸,并将其 RGB 值和 B/W 总体亮度值记录 在其上,以备后面使用:

程序测试

切换到程序界面,从"输入,输出"子分类中拖拽"摄像头输入"和"面板显示"模块 到程序窗口中:

从操作模块下的"显示"子分类中,拖拽一个"文本显示"模块到程序窗口中:

复制上面的三个模块如下:

2	2 2	a a a a a	0t - 1	य थर थर थर थ	at at at	82	2 6		a a a	2 2 2 2	a a a i	2 2 2
2 2 2		Camera Input	2 1 2 1 2 1	-	Panel Display	27 27 27	27 2 27 2 27 2	2 22 2 22 2 24	Va	r .≕		0
		Camera Input	2 1 2 1 2 1	-	Panel Display	21 21 22	2 2 2 2 2 2	2 32 2 32 2 32	Va	⊡		0
		Camera Input	•	-	Panel Display			* 1.* * 1.* * 1.*	Va	r-==		0
1.1	2 2					2.4	et e	1.11	a a a			er er er

右键单击第一个"摄像头输入"模块,在其属性面板上,将其指向"Detect 监测区域" 中的"R"属性:

重复这个操作,将其他的两个"摄像头输入"模块分别指向"Detect 监测区域"中的 "G"属性和"B"属性:

Main program
Detect R
Main program
Detect G
Main program
Detect B
· · · · · · · · · · · · · · · · · · ·

右键第一个"文本显示"模块,在其属性面板中,设置其名称为"Color R",修改其文字显示内容为"Color R= 0",然后将背景色改为"红色":

ID / Name:	Color R	
Text:	color R= 0	^
		*
Digits / columns:	14	
Lines:	1	
Background color:	E	dit
Text color:	E	dit
Note: The "ID / access the disc	Name" field is us	ed to gram.

之后重复这个操作,将其他两个文本框分别设置显示"绿色"和"蓝色":

接下来 ,分别设置三个 "面板显示"模块指向上面这三个 "文本显示"模块,使程序显示如下:

现在运行程序,将不同颜色的彩纸放在架子上,观察测得的数据应该接近彩纸上记录的 RGB 色值。

接下来我们进一步修改这个程序,使其功能更完善:

拖拽"起始"模块到程序窗口中:

从"变量、定时器..."子分类中,拖拽2个"变量"模块到程序窗口中:

从"指令"子分类中,拖拽"赋值"模块和"加"模块到程序窗口中:

从"分支、等待…"子分类中,拖拽"等待…"和"带数据输入的分支"模块到程序窗 口中:

从"操作模块"中的"控制模块"子分类中,拖拽"按钮"模块到程序窗口中:

从"输入输出"子分类中,拖拽"面板输入"模块到程序窗口中,并在其属性面板中设置指向"按钮"模块:

ABC	Panel
	Input

复制模块,修改相应的属性,将上面这些模块组织成下面的程序显示:

在上面这个程序里,我们用 RGB 中的"R"值作为分支判断的数据输入值,我们修改分 支判断的条件数值,以便判断每次放置的颜色卡片是否是我们要监测的颜色。但是每种颜色 的 RGB 三个通道的色值有时是非常接近的,因此用一个颜色通道的数值来做条件判断往往 不够准确,这时我们可以考虑用多个条件来做颜色判断:

如果在自然光干扰较小的环境中,如果颜色纸张的测试数值较为稳定,那么我们可以用 上面的这种多通道颜色的"等值"判断来确认颜色,但是如果数值不够稳定,这种颜色的判 断也是不准确的会存在误差。完整的测试程序如下:

实验

有多种逻辑来选择你想要的颜色,请尝试不同的方法编程来实现颜色筛选功能。