fischertechnik 🕬

《数字传感器:轨迹传感器》

数字信号是指某些传感器提供两种不同状态的信号:高电平或低电平,开或关,逻辑1或逻辑0。数字信号是编程中最容易处理的信号类型。

轨迹传感器的内部是由两个单独的传感器组成的有源设备,需要一个额外的9V电源供电。

一、<u>实验设备:</u>

ID	名称	中文名称	数量	图片
1	TX Controller	TX 控制器	1	
2	Power Supply	电源	1	
3	Wires	电线	2	
4	Trail Follower Sensor	轨迹传感器	1	
5	Lamp	LED 灯(带灯座)	2	
6	Building Block 15	15mm 构建块	1	
7	Building Block 30	30mm 构建块	2	

二、<u>实验流程:</u>

轨迹传感器需要相当接近它要遵循的线条。 在该示例中,构建小型装置以安装传感器,保持距离桌面 表面约15mm,如下图所示:

将轨迹传感器安装到组件上,确保传感器的"眼睛"指向下方,将一条电工胶带粘贴在纸张上,如下 图所示:

轨迹传感器一共有四根电线,红色电线需要接到控制器上的 9V 电源输出,绿色电线可以接到控制器上的任何"地",本例中,接到 I1 输入端子组中的"地":

传感器上的另外两根电线是信号线,现在,将蓝黄条纹电线连接到 11 端子,将蓝色电线连接到 12 端

在 RoboPro 创建一个新文件。设置环境为 TX/TXT 控制器,使用级别为初学者,在【COM / USB】 设置窗口中设置为 USB 连接、TX 控制器类型。

之后,在 ROBO Pro 软件的接口测试窗口中进行正确的传感器输入类型设置,本实验中,我们将 I1 和 I2 的输入端口类型都设置为"Digital 10V (Trail sensor)",如下图所示:

inputs / Outpu	Info	
Inputs		Outputs:
I1 🔲 0	Digital 10V (Trail sensor) 🔹	M1 mode steps ccw Stop cw
I2 🔲 0	Digital 10V (Trail sensor) 🔹	© 01+02 © 512 8
I3 🔲 0	Digital 5kOhm (Switch,) 🔻	M2 mode steps O ccw O Stop O cw
I4 🔲 0	Digital 5kOhm (Switch,) 🔻	03+04 0 512 8
I5 🔲 0	Digital 5kOhm (Switch,) 🔻	M3 mode steps 💿 ccw 💿 Stop 💿 cw
I6 🔲 0	Digital 5kOhm (Switch,) 🔻	◎ M3 ◎ 8 ○ 05+06 ○ 512
I7 🔲 0	Digital 5kOhm (Switch,) 🔻	M4 mode steps 💿 ccw 💿 Stop 💿 cw
I8 🔲 0	Digital 5kOhm (Switch,) 🔻	M4
Counter Inpu	ts	State of port:
Cou	nter Reset	Connection: Running
C1 🔲 0		Interface: USB/EM9 #00000000 (ROBO T
C2 📃 0		Master (Extension Medules
C3 🔲 0		
C4 🔲 0		

将轨迹传感器放置在电工胶带的正上方,如下图所示:

现在,我们将轨迹传感器在电工胶带上方进行左右小幅度的移动,在接口测试窗口中观察,I1和I2在 什么时候显示0,什么时候显示1。

调换 I1 和 I2 上的导线, 观察反接导线对传感器的工作是否有影响?

三、实验结论

通过测试,我们得知,轨迹传感器上的两组内置传感器(一个圆形的光纤发射器和一个方形的光线接收器是一组)的工作方式是一样的,即:当置于黑色电工胶带上方时,信号返回为 "0",当移动至白色纸 张上方时,信号返回为 "1"。

接下来,我们要改装测试装置,在控制器的 M1 和 M2 输出端口上添加 LED 灯泡,您可以将它们并列 安装在传感器的支架上,如下图所示:

四、<u>编写程序</u>

拖拽"数字分支"模块到编程窗口,右键单击模块,调出属性设置面板,将数字输入端口设置为 I1 和 I2,将传感器类型设置为"Trail sensor"(轨迹传感器),如下图所示:

Bran	ch			? ×) · ·				
-Digital i	input:			Input mode:					
© I1	I5	C1D	© M1E	10V					
I2	0 16	C2D	M2E	5kOhm	1.1	2	1.1		
I 3	0 17	C3D	O M3E		1	11 🛯			
© I4	I8	C4D	M4E						
Interfa	ice / Exter	nsion			1.1	\mathbb{N}			•
IF1	[IF1 -						×.		
Sensor	type:					12		0	-
Pushb	outton swit	tch			11		1		
Pushb	Pushbutton switch						11		
Reed	Phototransistor Reed switch						\cdot		
(Trail s	CTrail sensor						· · ·		•
🔘 🔘 Swaj	Swap 1/0 bh≨nches						Y. 1		
	OK Cancel								

接下来拖拽其他模块,将程序编写为下面的样子:

程序中 LED 灯的点亮有四种可能的逻辑,这些逻辑将通过左右移动轨迹传感器而看到效果。 下面是真值表,请通过运行程序检验逻辑,以确保 LED 灯在四种情况下都能正常的点亮(如有问题, 请检查 LED 灯的接线)。

11	12	M1	M2
0	0	ON	ON
0	1	ON	OFF
1	0	OFF	ON
1	1	OFF	OFF

现在,开始进行程序测试,左右小幅度地移动轨迹传感器,观察并记录测试结果。