

《模拟传感器: 电位器》

一、<u>实验设备:</u>

ID	名称	中文名称	数量	图片
1	TX Controller	TX 控制器	1	6
2	Power Supply	电源	1	
3	Wires	电线	2	
4	Potentiometer	电位器	1	
5	Lamp	LED 灯(帯灯座)	1	

二、<u>实验流程:</u>

电位器是一个三端可变电阻器。电阻环上有两个固定的末端,中间端子连接到一个可以旋转移动的黄铜刷上,所以中间端和末端之间的电阻是可变的:

电位器的原理图如下:

通常,我们只需要连接电位器的一个末端和它的中间端子即可,本例中,我们将电位器的管脚1和2连接到TX控制器上的I1输入端:

在 RoboPro 创建一个新文件。设置环境为 TX/TXT 控制器,使用级别为初学者,在【COM / USB】 设置窗口中设置为 USB 连接、TX 控制器类型。

之后,在 ROBO Pro 软件的接口测试窗口中进行正确的传感器输入类型设置,本实验中,我们将 I1 输入端口的类型设置为 "Analog 5KOhm(NTC,...)",如下图所示:

nputs / Outputs	Info				
Inputs		Outputs:			
I1 📝 5000	Analog 5kOhm (NTC,) 🔻	M1 mode	steps	() ccw	Stop Cw
I2 🔲 0	Digital 5kOhm (Switch,) 🔻	© 01+02	0 512		8
I3 🔲 0	Digital 5kOhm (Switch,) 🔻	M2 mode	steps	© ccw	Stop © cw
I4 🔲 0	Digital 5kOhm (Switch,) 🔻	M2 03+04	8 512		8
I5 🔲 0	Digital 5kOhm (Switch,) 🔻	M3 mode	steps	© ccw	Stop © cw
I6 🔲 0	Digital 5kOhm (Switch,) 🔻	M3 05+06	8 512		8
I7 🔲 0	Digital 5kOhm (Switch,) 🔻	M4 mode	steps	© ccw	Stop © cw
I8 🔲 0	Digital 5kOhm (Switch,) 🔻	M4 07+08	8 512		8
Counter Inputs	3	State of por	t:		
Count	er Reset	Connection:	Runn	ing	
C1 🔲 0		Interface:	USB/	EM9 #00	000000 (ROBO T
C2 🔲 0		Marshare (First			
C3 🔲 0		Master / Ext	ension M	odule:	_

之后,我们试着旋转电位器的电刷手柄,观察 I1 输入端的读值有什么变化,交换 I1 输入端的红绿两 根电线,再次旋转电刷手柄,观察 I1 输入端的读值是否会发生变化?

三、 程序编写

将 LED 灯接到 TX 控制器上的 M1 输出端,将下面的这些模块拖拽至编程窗口中:

我们的程序中一共需要四个"数字分支"模块和 5 个"马达输出"模块,复制出它们。

5 个 "马达输出"模块的图标全部设置为 "lamp",其中一个的动作设置为 "Off",剩下的 4 个动作设置为 "On",马达转速分别设置为 "2"、"4"、"6"、"8"。

4个"数字分支"模块的参数值分别设置为"500"、"1500"、"2500"和"3500",并全部交换 Y / N。

最终,你的程序应该看起来如下图所示:

测试这个程序,旋转电刷手柄,观察 LED 亮的效果。